分式》全章复习与巩固(基础)
【学习目标】
1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0的条件.
2.了解分式的基本性质,掌握分式的约分和通分法则.
3.掌握分式的四则运算
4.结合分析和解决实际问题,讨论可以化为一元一次方程的分式方程,掌握这种方程的解法,体会解方程中的化归思想.
【知识网络】
【要点梳理】
【高清课堂 分式全章复习与巩固  知识要点】
要点一、分式的有关概念及性质
1.分式
一般地,如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式.其中A叫做分子,B叫做分母.
要点诠释:分式中的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式才有意义.
2.分式的基本性质
  M为不等于0的整式).
3.最简分式
分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.
要点二、分式的运算
1.约分 
利用分式的基本性质,把一个分式的分子和分母的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.
2.通分
利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分.  
3.基本运算法则
  分式的运算法则与分数的运算法则类似,具体运算法则如下:
(1)加减运算 
  ;同分母的分式相加减,分母不变,把分子相加减.
异分母的分式相加减,先通分,变为同分母的分式,再加减.
2)乘法运算  ,其中是整式,.
两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.
3)除法运算  ,其中是整式,分式方程练习题.
两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘.
4)乘方运算             
分式的乘方,把分子、分母分别乘方.
4.分式的混合运算顺序
 先算乘方,再算乘除,最后加减,有括号先算括号里面的.
要点三、分式方程
1.分式方程的概念
分母中含有未知数的方程叫做分式方程.
2.分式方程的解法
解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.
3.分式方程的增根问题
增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根.
要点诠释:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.
要点四、分式方程的应用
  列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.
【典型例题】
类型一、分式及其基本性质   
1、在中,分式的个数是(    )
A.2            B.3              C.4          D.5
【答案】C;
【解析】是分式.
总结升华判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.
2、为何值时,分式的值为0?
【思路点拨】先求出使分子为0的字母的值,再检验这个值是否使分母的值等于0,当它使分母的值不等于0时,这个值就是要求的字母的值.
【答案与解析
解: 要使分式的值为0,必须满足分子等于0且分母不等于0.
由题意,得  解得
∴  当时,分式的值为0.
总结升华分式的值为0的条件是:分子为0,且分母不为0,即只有在分式有意义的前提下,才能考虑分式值的情况.
举一反三:
【变式】(1)若分式的值等于零,则_______
    (2)当________时,分式没有意义.
【答案】1)由0,得. 22=0,所以=-2;     
    (2)当,即=1时,分式没有意义.