应用数学毕业论文
摘要:
长期以来,许多学校的课堂教学存在一个严重问题,即只注重教师与学生之间的“教”与“学”,而忽视了数学知识的实用性,从而导致学生自主学习兴趣萎缩。学生是学习的主人,而不是被动地接受知识的容器,在学习过程中要培养学生自主学习的兴趣和能力。
教师要将更多的精力放在指导学生学习知识的过程中,是教学的参与者,要担负着为学生营造自主学习的空间和背景,要认识到课堂教学只不过是师生共同研究问题、解决问题的一个环节,帮助学生本质地理解数学,运用数学和发现、创造的能力时,我们就把握住了数学教育的时代性、科学性,我们就深入到了数学素质教育的核心。
随着我国教育事业的不断进步和发展,我们应紧跟时代的步伐,大力推进中学数学课程、教材、教法的,数学教师必须转变教育观念,掌握新的教学基本功,为最终提高新课程的教学而努力。
关键词:
应用;探索;实践;实用;乐趣
19世纪后期,20世纪初期,欧美相继掀起了一场声势浩大的教育运动,在这场教育革新运动中出现了以学生为中心、以活动为主的新教育思潮。也出现了一批新思潮的代表人物,其中以教育家蒙台梭利最为典型,他还设计了新的教学模式并与旧教学模式相对照:
在新课程的目标中有一条是:“改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流合作的能力。”从数学这一学科来讲,这就是要求我们在运用数学的过程中向学生传授数学知识。
数学这门课程给人的总体感觉是:枯燥、单调、乏味。因此,学生学习起来也没有什么兴趣。如何才能让学生喜欢数学呢?据一项研究发现,学生是否对数学有兴趣,最重要的因素之一是数学内容是否对自己有用,包括在生活中、数学中和其他学科中等。而且这种现象随年龄的增长更为明显。
因此,我们必须认识到,数学课程应该给学生提供认识数学的用途,运用所学的数学知识解
决实际问题的机会。所以,要让学生喜欢数学,就必须让学生感受到数学的趣味性和实用性,这就需要教师准确地把握切入点,恰当地引导。笔者就是从运用数学的角度来进行数学课教学的,发现学生学习数学的劲头特别足。那么,如何在运用数学的过程中向学生传授数学知识呢?笔者认为,要真正做到这一点,教师就必须了解数学的特点和学生的年龄特征,并能恰当地处理好它们,这样才能充分唤起学生的求知欲,进行高效的教学。
一、数学的特点
数学是研究现实世界数量关系和空间形式的一门科学,它的基本特点是高度的抽象性、逻辑的严密性和应用的广泛性。
1、高度的抽象性
恩格斯在他的经典论断“纯数学的对象是现实世界的空间形式和数量关系”中指出,数学的内容不是在头脑中凭空构思出来的,而是从现实世界中经过抽象出来的。我们知道,从具体的事物中抽象出数量关系和空间形式,这是一种抽象能力。它不仅是学习数学的需要,而且是认识事物的基本能力。因此,通过数学学习,培养抽象能力是数学教学的重要任务。
例如,进行相交线的教学中,笔者出示了这样一个问题:如右某某某,平面上有A、B、C、D四个村庄,为解决当地缺水问题,某某某府准备投资修建一个蓄水池。
(1)不考虑其他因素,请画出蓄水池H的位置,使它与四个村庄的距离之和最小。
(2)计划把河中的水引入蓄水池中,怎样挖可使开凿的水渠最短?说明理由。
本题就是看你能否从实际生活中的问题中抽象出一个纯数学问题来,其实就是利用“两点之间线段最短”和“垂线段最短”来解决实际问题的一个题目,也是相交线在日常生活中运用的充分体现。让学生感受到数学的有用性,自然就增强了他们学习数学的兴趣。
2、逻辑的严谨性
逻辑的严谨性反映了数学结论的确定性与逻辑结构的严密性。凡是数学结论的获得都要经过严格的演绎推理,从条件出发,根据公理、已证明的定理,按照正确的推理规则得出结论。在新的结论的推证过程中,要步步有依据,处处合乎逻辑要求。因此,通过数学学习培养学生逻辑思维能力是数学教学的基本要求。
例如,在学习三角形三边关系时,笔者问一个个子最大的同学:你一步最多能迈出多远?能通过今天的知识加以说明吗?然后,笔者给同学们一个问题:如果把△ABC的三条边分别记作a,b,c,那么请说明:a+b>c,b+c>a,a+c>b。
本题是利用“两点之间线段最短”的性质来推导“三角形两边之和大于第三边”性质的问题,在于让学生能够运用所学的知识进行推理行为的训练,同时也让他们知道在学习数学时,严谨的逻辑推理是多么重要,而且在我们的日常生活中,也处处都要用到这种数学的逻辑推理思维。
3、应用的广泛性
数学应用的广泛性,一方面表现在我们日常生活、生产实践中,几乎无处不碰到涉及数量关系和空间形式的问题,都要用到数学知识;另一方面表现在现代科学技术的学习研究中,出现了“数学是一切科学得力的助手和工具”的趋势。数学不仅是它的内容,而且还包括它的思想和方法。同时,数学也是学习物理、化学等课程的工具。因此,向学生传授必需的数学基础知识,培养学生获得知识和运用知识的能力,是数学教学的基本目的。
例如,在学习“利用二次函数性质求最值”时,笔者选了这样一个题:公司要设计一种无盖的长方体包装箱,用一块正方形木板,其边长为1米,如何设计才能使这个包装箱的容积最大?请画出设计某某某。此题在于让学生用所学知识自行设计方案,学以致用,体会数学知识用途之广,同时也强化了数学的应用过程,感觉到以后的学习、生活、工作中确实离不开数学,大大激发了学生学习数学的欲望。
二、学生的年龄特征
数学教学论文中学教育的对象是十一二岁至十六、七岁的青少年,从思维发展的特征看,他们正处在以形象思维为主逐步向抽象思维过渡的阶段。因此,我们在确定教学目标时,要考虑到学生智力发展水平的局限性以及经验方面的不足,在教W中对基础知识和基本能力的要求不能太高、太深、太广,而应适应学生的知识水平和理解水平。
例如,笔者在一本资料书中看到这样一道填空题:n名同学参加乒乓球比赛,每两名同学之间赛一场,一共需要进行场比赛。这题对于学生来说,有些难了,甚至无法下手了。笔者后来把它改为:5名同学参加乒乓球比赛,每两名同学之间赛一场,一共需要进行多少场比赛?10名同学呢?n名同学呢?这样,就把难度分散了,而且学生也容易出规律来,还能
培养学生的探索精神。
另外,考虑到学生的智力发展是有潜力的,因此,一些较抽象、较深奥的数学初步知识,可以通过适当的方法教给学生,使中学生的聪明才智得到充分利用和发挥。
因此,在了解教学内容和教学对象的特点之后,就可以在教学活动中充分从实际应用中来传授数学知识,可以让学生感到数学的有用性,体会到数学为学生毕业后适应生活、参加生产和进一步学习所必需,并且也是学习其他有关课程的工具。这样,学生学习起来就有兴趣了。另外,从运用数学数学的角度来进行教学还有以下几个优点:
发布评论