小学六年级数学教学论文3篇
培养学生的数学应用意识和实践能力
一、源于生活,创设轻松愉快的学习情境
数学离不开生活,生活中处处有数学。在教学中,以教材为蓝本,注重密切数学与现实生活的联系,创设轻松愉快的数学情境。
例如教学“比一比”通过学生喜爱的卡通形象――蓝猫邀请大家参观客厅来导入新课,学生兴趣盎然;引导学生发现猫大哥客厅里的
数学秘密,学生兴趣高涨。又如教学“统计”,借助媒体创设大象
过生日的情境,并以此为线索展开学习活动,提高学生的学习兴趣。
二、用于生活,培养学生的应用意识和实践能力
新课程强调人人学有价值的数学,人人学有用的数学。因此,数学学习必须加强与生活实际的联系,让学生感受到生活中处处有数学。
数学只有回到生活中,才会显示其价值和魅力,学生只有回到生活中运用数学,才能真实地显现其数学学习水平。
如在教学“比一比”时,通过教室周围的物体的长短高矮的比较,使学生学会用数学的眼光观察周围事物。
如在学习“认位置”后,回家观察一下自己的卧室,并用上下、前后、左右描述一下卧室内物体的相对位置关系,然后说给爸爸妈
妈听。观察一下自家房屋周围、村庄周围都有些什么,到学校后,
和小伙伴交流。
又如在学习了“统计”后,问学生你准备统计什么?这一环节充
分利用学生已有的生活经验,把所学的知识应用到生活中去,解决
数学教学论文
身边的数学问题,了解数学在现实生活中的作用,从而使学生体会
到学习数学的重要性,学而有用的喜悦感,数学与生活的联系得到
了最好的体现。
总之,数学离不开生活,生活中处处有数学,它来源于生活又应用于生活。来于生活、归于生活的知识才是有价值的知识。把数学与生活联系起来,使学生在不知不觉中感悟数学的真谛。
什么是数?
开天辟地之初,人类就开始与数打交道。数即是数目的意思。正如《汉书·律历志上》云:“数者,一十百千万也。”
什么是数学?
数学是中小学生的主科。数学学习是中小学生增长学习能力和创造能力的广阔天地。
一.驴唇怎能对得上马嘴呢
阴错阳差的巧事,张冠李戴的误会,在大千世界,这等笑话,时有发生。可是,在数学课上,难道也会发生驴唇不对马嘴的事情吗?
(一)平地起风雪
接着,一个男孩起来补正:“a+1,a+2,a+3,a+4,a+5,a+6,a+7。”尔后,下课铃响了。
事情平平常常。一个女孩答错了题,一个男孩纠正过来,全班同学都明白了正确答案。下课,大家就都散了。
那么,这件事是否到此就算了结了呢?
请思考10分钟,然后,发表你的见解。
单兵——我看是了结了。老师完成了教学任务,学生也完成了学习任务。
张娟——还有,班上的同学也有义务鼓励那位小姑娘。
赵老师——直截了当地说,我认为没有了结。因为任何结果都有原因。小姑娘答成“a,b,c,d,e,f,g”这是她思维的结果。那么,她一定有个由此及彼的思维过程,其中深藏着错误的原因。老
师与那个小姑娘的任务是出原因,避免再错。如若不然,再遇类
似问题,也许她又答成“甲、乙、丙、丁、戊、己、庚”呢。
肖冬春——我同意这种看法。换句话说,知道男孩答案正确,并不等于到自己的错误原因。
韩小彧——前面几位同学的发言,从不同的角度,各有各的道理。但是,又都有一个绝对化的框框束缚着。这就是姑娘的答案一无是处;小男孩的答案绝对正确,天衣无缝。这个框框正是上面5个发言
的潜在的共同前提。当然,错误答案之正确部分及正确答案之不足
部分,如果真有,我现在还未想出。
赫峰——她提出的问题,是一条崭新的思路,很有启发。我发现小姑娘的答案中有一个合理的因素,7个字母与题目要求的7个自
然数合得上。
姚树——题目要求“连续”,按英语字母表,从a到g是连续的,并没断开,也没跳跃。
祝越——7个符号都可以表示自然数。这一点。也是符合题目要
求的。
李河——这么说来,“a以后”、“7个”、“连续”、“自然数”4大要素都合乎题目要求,错在哪里呢?
讨论至此,真是平地起风云。看来已经结束的问题,却又引出一片新话题。况且本来被公认为绝对错误
的答案,现在却不到一点
破绽了。
(二)罕见的对话
正像大家的看法一样,当堂听课的主任觉察到:这件事并未结束。
尔后,主任将女孩到办公室。先肯定她喜欢英语,大胆举手的优点,接着是双方一连串的对话。
“那题明白了吗?”
“明白了。”
“你的答案呢?”
“全错了。”
“一点对的地方也没有?”
“没有。”
“一丁点儿都没有?”
“没有。”
“真的吗?”
“我没想过。”(唉!没有想过就坚定地认为自已全错了!)
“现在想想看。”
“想不出。”
“b,c,d,e,f,g,不是在a以后吗?”
“是”。
“字母不是说了7个吗?”
“是”。
“7个字母,排列有序,为什么不跳着说呢。”
“题目上说……”
“你看,‘a以后’、‘7个’、‘连续’,都有了。这些字母又都能表示自然数。那么,哪有错的地方呢?”
“咦,怎么没有错的地方了呢?”
最后,在主任启发下,发现了错误:对于这些字母,没有给出符合题意的数学含义。一句话,把英语字母转化为数学符号的任务,没有完成。
出错误原因,就能纠正错误。简单说,将7个英语字母赋予符合题意的数学含意就是了。这样,到了与众不同的答案:若a为
自然数,令a'=a+1,b=a+2,c=a+3,d=a+4,e=a+5,f=a+6,g=a+7,则a',b,c,d,e,f,g”便是正确答案。
就是这样,正确与错误之间,只有一小撇之差。
(三)深刻的启示
中小学生在数学学习中,错误常见,改错也常见。但是,这样的改错方式从未见过。
这样的改错方式给我们的启示是深刻的,是多方面的。
1.在变通性的动态思考中更深刻地掌握数学新原理
用符号表示数是代数学的根本特点。在小学算术中只用阿拉伯数字表示固定的具体数目。而在中学代数中,就要用抽象符号表示多
种多样的数学含义。用符号表示数的课题,是代数起始课的重点和
难点。上面的题,正是为了使学生掌握这个代数原理而设计的。
两种改错方式对理解原理的作用是不同的。先看一般方式:
a,b,c,d,e,f,g→a+1,a+2,a+3,a+4,a+5,a+6,a+7
再看变通方式:
a,b,c,d,e,f,g→令a'=a+1,b=a+2,c=a+3,d=c+4,
e=a+5,f=a+6,g=a+7→a',b,c,d,e,f,g
后者增加“令a'=a+1,……,g=a+7”的一步,同时也就增加了“a'~g”的新的答案形式,最后回到“a+1,……,a+7”的答案。
中间增加两步推导,都运用了“符号表示数”的原理。这样,也就
加深了对这一原理的理解。
总之,对比两种处理方式,后者更有利于数学知识的掌握和学习能力的提高。
2.创造思维能力在运用中得到增长
运用变通性方式改错,不仅有利于学习能力的提高,也有利于创造思维能力的增长。