◎內積的坐標表示法:
若是坐標平面上任意兩個向量, 則與的內積
為                   
【例1】 已知, 求(1) (2)與的夾角. 解
(1). 
(2)設與的夾角為. 因為, 
所以      故. 
【例2】
設為實數,.若,則的值為何? 解
因為, 且, 
所以  ,  即.
得      ,
整理得    ,
解得 
◎兩向量的夾角:
設 =(﹐)﹐=(﹐)為兩個非零向量﹐夾角,
  則  cosθ=  = 
◎若直線的方程式為, 則
(1)向量與直線平行. 
(2)向量與直線垂直. 
◎兩直線的交角:
兩直線L1:x+y+=0﹐L2:x+y+=0 的交角為,
(另一交角為),則
cosθ=.
【例3】 求兩直線與的交角.  解
與的法向量分別為與
若與的夾角為, 則
推得. 
故與有一交角為, 另一交角為
◎點到直線的距離公式
點到直線的距離
◎兩平行直線間的距離公式:
兩平行直線與的距離
【例4】 求點到直線的距離.  解利用點到直線的距離公式, 得所求的距離為
【例5】 求兩平行直線與的距離.  解
將的方程式改寫為, 利用兩平行直線間的距離公式, 得所
  求的距離為
×
【例6】
已知兩直線與, 求兩直線的交角平分線方
程式.  解
設點為角平分線上任一點. 因為角平分線上任一點到這個角的兩邊等距離, 所以   
化簡得         
即  或     
× 故角平分線方程式為或. 
◎柯西不等式:
對於任意實數,不等式  恆成立, 
且等號成立於時. 
【例7】
設實數滿足,求的最小值,並求當有最小值
時,與的值.  解
利用柯西不等式, 得
將代入, 得
而且當時等號成立. 解
得. 
故當時, 有最小值. 
【例8】
設實數滿足,求的最大值與最小值,並分別求當
有最大值與最小值時,與的值.  解
利用柯西不等式, 得
  將代入, 得
  而且當時等號成立. 令, 得
  代入中, 得
函数的表示法.
  解得.
  (1)當時, , , .
  (2)當時, , , .
  故當時, 有最大值25;
×    當時,  有最小值. 
◎正射影長:
在上的正射影長
◎正射影:
在上的正射影
【例9】 已知, 求在上的正射影及正射影的長.  解
設在上的正射影為. 
(1)利用正射影公式, 得
× (2)正射影的長為
?
?
??
??
??