八年级数学上册知识点北师大版(汇集4篇)
八年级数学上册知识点北师大版(1)
全等三角形
一、知识框架:
二、知识概念:
基本定义:
⑴全等形:能够完全重合的两个图形叫做全等形.
⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.
⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.
⑷对应边:全等三角形中互相重合的边叫做对应边.
⑸对应角:全等三角形中互相重合的角叫做对应角.
基本性质:
⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.
⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.
全等三角形的判定定理:
⑴边边边():三边对应相等的两个三角形全等.
⑵边角边():两边和它们的夹角对应相等的两个三角形全等.
⑶角边角():两角和它们的夹边对应相等的两个三角形全等.
⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等.
⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等.
角平分线:
⑴画法:
⑵性质定理:角平分线上的点到角的两边的距离相等.
⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.
证明的基本方法:
⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶
角、角平分线、中线、高、等腰三角形等所隐含的边角关系)
⑵根据题意,画出图形,并用数字符号表示已知和求证.
⑶经过分析,出由已知推出求证的途径,写出证明过程.
八年级数学上册知识点北师大版(2)
三角形
一、知识框架
二、知识概念:
三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.
三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.
高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.
中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.
角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.
三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.
多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.
多边形的内角:多边形相邻两边组成的角叫做它的内角.
多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.
多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对
角线.
正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.
平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用
多边形覆盖平面,
公式与性质:
⑴三角形的内角和:三角形的内角和为180°
⑵三角形外角的性质:
性质1:三角形的一个外角等于和它不相邻的两个内角的和.
性质2:三角形的一个外角大于任何一个和它不相邻的内角.
⑶多边形内角和公式:边形的内角和等于·180°
⑷多边形的外角和:多边形的外角和为360°.
⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角
线,把多边形分成个三角形.②边形共有条对角线.
八年级数学上册知识点北师大版(3)
三角形
一、知识框架
二、知识概念:
三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.
三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.
高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.
中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.
角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.
三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.
多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.
多边形的内角:多边形相邻两边组成的角叫做它的内角.
多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.
多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对
角线.
正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.
平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用
多边形覆盖平面,
公式与性质:
⑴三角形的内角和:三角形的内角和为180°
⑵三角形外角的性质:
性质1:三角形的一个外角等于和它不相邻的两个内角的和.
性质2:三角形的一个外角大于任何一个和它不相邻的内角.
⑶多边形内角和公式:边形的内角和等于·180°
数学八年级上册⑷多边形的外角和:多边形的外角和为360°.
⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角
线,把多边形分成个三角形.②边形共有条对角线.
八年级数学上册知识点北师大版(4)
全等三角形
一、知识框架:
二、知识概念:
基本定义:
⑴全等形:能够完全重合的两个图形叫做全等形.
⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.
⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.
⑷对应边:全等三角形中互相重合的边叫做对应边.
⑸对应角:全等三角形中互相重合的角叫做对应角.
基本性质:
⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.
⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.
全等三角形的判定定理:
⑴边边边():三边对应相等的两个三角形全等.
⑵边角边():两边和它们的夹角对应相等的两个三角形全等.
⑶角边角():两角和它们的夹边对应相等的两个三角形全等.
⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等.
⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等.
角平分线:
⑴画法:
⑵性质定理:角平分线上的点到角的两边的距离相等.
⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.
证明的基本方法:
⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶
角、角平分线、中线、高、等腰三角形等所隐含的边角关系)
⑵根据题意,画出图形,并用数字符号表示已知和求证.
⑶经过分析,出由已知推出求证的途径,写出证明过程.
发布评论