新人教版八年级上册数学-第一章:三角形
人教版八年级数学(上册),第一章:三角形
一、三角形相关概念
1.三角形的概念
要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示
通常用三个大写字母表示三角形的顶点,如用A、B、C表示三角形的三个顶点时,此三角形可记作△ABC,其中线段AB、BC、AC是三角形的三条边,∠A、∠B、∠C分别表示三角形的三个内角.
3.三角形中的三种重要线段
三角形的角平分线、中线、高线是三角形中的三种重要线段.
(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.
注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线.
②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.
③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.
(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.
注意:①三角形有三条中线,且它们相交三角形内部一点.
②画三角形中线时只需连结顶点及对边的中点即可.
(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.注意:①三角形的三条高是线段
②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.
(二)三角形三边关系定理
①三角形两边之和大于第三边,故同时满足△ABC三边长a、
b、c的不等式有:a+b>c,b+c>a,c+a>b.
②三角形两边之差小于第三边,故同时满足△ABC三边长a、
b、c的不等式有:a>b-c,b>a-c,c>b-a.
注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可
(三)三角形的稳定性
三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理.
三角形内角和性质的推理方法有多种,常见的有以下几种:(四)三角形的内角
结论1:三角形的内角和为180°.表示:在△ABC中,∠A+∠B+∠C=180°
(1)构造平角
①可过A点作MN∥BC(如图)
②可过一边上任一点,作另两边的平行线(如图)
(2)构造邻补角,可延长任一边得邻补角(如图)构造同旁内角,过任一顶点作射线平行于对边(如图)
结论2:在直角三角形中,两个锐角互余.表
示:
如图,在直角三角形ABC中,∠C=90°,那么
∠A+∠B=90°(因为∠A+∠B+∠C=180°)
注意:①在三角形中,已知两个内角可以求出第三个内角如:在△ABC中,∠C=180°-(∠A+∠B)
②在三角形中,已知三个内角和的比或它们之间的关系,求各内角.
如:△ABC中,已知∠A:∠B:∠C=2:3:4,求∠A、∠B、∠C的度数.
(五)三角形的外角
1.意义:三角形一边与另一边的延长线组成的角叫做三角形的外角.
如图,∠ACD 为△ABC 的一个外角,∠BCE
也是△ABC 的一个外角,
这两个角为对顶角,大小相等.
2.性质: ①三角形的一个外角等于与它不相邻的两个内角的和. ②三角形的一个外角大于与它不相邻的任何一个内角. 如图中,∠ACD=∠A+∠B , ∠ACD>∠A , ∠ACD>∠B.
③三角形的一个外角与与之相邻的内角互补 3.外角个数
过三角形的一个顶点有两个外角,这两个角为对顶角(相等),可见一个三角形共有六个外角.
(六)多边形
①多边形的对角线2)3( n
n 条对角线
②n 边形的内角和为(n -2)×180°
③多边形的外角和为360°
考点1
1.对下面每个三角形,过顶点A 画出中线,角平分线和高.
(1)
C B
A
C B A C B A
数学八年级上册
发布评论