烷烃卤代与方程式
C2H6+CL2==C2H5CL+HCL,CH3CH2Cl。取代反应是指化合物或有机物分子中任何一个原子或原子团被试剂中同类型的其它原子或原子团所替代的反应。
乙烷与的取代反应方程式
用通式表示为:R-L(反应基质)+A-B(进攻试剂)→R-A(取代产物)+L-B(离去基团)属于化学反应的一类。
取代反应在有机化学中非常重要,而无机化学中同样存在取代反应,并非只限于有机化学
烷烃卤
一、分类
卤代烷可以根据卤原子所连接的碳原子的不同来分类。当卤原子分别与伯、仲或叔碳原子相连时,分别称为伯、仲或叔卤代烷。
例如:CH3CH2CH2Cl1-氯丙烷(1°)
根据卤原子数不同分为一卤代烷,二卤代烷,多卤代烷。
根据卤原子种类不同分为氟代烷,氯代烷,溴代烷,碘代烷。
根据烷基的不同分为饱和卤代烷,不饱和卤代烷,卤代芳烃。
二、命名规则
一些简单常见的卤代烷通常用普通命名法命名,如甲基氯、异丙基溴、叔丁基氯等。
卤代烷的系统命名:
(a)选择连有卤原子的碳原子在内的最长碳链作为主链,根据主链的碳原子数称为“某烷”;
(b)支链和卤原子均作为取代基
(c)将取代基的名称和位次写在主链烷烃名称之前,即得全名。
三、元素组成
碳、卤素(氟、氯、溴、碘)、氢
注:有些卤代烷不含氢,比如四氯化碳(CCl)
四、物理性质
在卤代烷(氟代烷除外)中,只有氯甲烷、氯乙烷、一氯乙烯溴甲烷为气体,其余均为无液体或固体。但碘代烷和溴代烷,尤其是碘代烷,长期放置因分解产生游离碘和溴而有颜。一卤代烷有不愉快的气味,其蒸汽有毒。它们均不溶于水,而溶于弱极性或非极性的乙醚、苯、烃等有机溶剂,某些卤代烷本身即是很好的有机溶剂,如二氯甲烷甲烷与反应四氯化碳等。在卤代烷分子中,随卤原子数目的增多,化合物的可燃性降低。
卤代烷的沸点随分子中碳原子数的增加而升高。碳原子数相同的卤代烷,沸点则是:碘代烷>溴代烷>氯代烷。在异构体中,支链越多沸点越低。一氯代烷的相对密度小于1,一碘代烷和一溴代烷的相对密度大于1.同系列中,卤代烷的相对密度随碳原子数的增加而下降。
五、化学性质
卤代烷分子中,由于C-X(X=Cl,Br,I)键是极性共价键,比较容易断裂,使卤代烷能够发生多种反应。C-F键一般具有相当大的稳定性,其反应与其他卤素不同。
亲核取代反应
卤代烃中的卤素可以被其他原子或基团所取代。反应中,卤素以负离子的形式离去,取代原子或基团则是一些亲核试剂。亲核试剂进攻缺电子的碳形成取代产物——亲核取代反应,用SN表示。
SN2机理:对溴甲烷的水解,反应是同步过程。亲核试剂从离去基团的背面进攻中心碳原子,首先生成较弱的键,同时离去基团与碳之间的键有一定程度的减弱,碳原子上的另外三个键也逐渐发生变化,由伞形到平面形,这需要消耗能量(活化能)。随着反应的进行,当达到能量最高状态即过渡态后,新键生成,旧键断裂,碳原子上的其余三个键由平面形重新变为伞形。整个过程像雨伞在大风中翻转一样。当反应物生成过渡态时,需要吸收活化能,过渡态为势能的最高点,一旦形成过渡态,即释放能量,形成产物。由于控制反应速率的一步是双分子,需要两种分子相互碰撞反应,故反应为双分子的亲核取代,表现为二级反应
SN1机理:SN1反应是分步进行的,反应物首先离解成碳正离子和带负电荷的离去基团,反应需要能量(活化能),形成C中间体,这是控制反应速率的一步。当分子解离后,C立即与亲核试剂结合,生成产物,此步反应极快。C—X键的离解需要较高能量,当达到能量最高
点时,形成第一个过渡态Ts1[R3C…..X],然后快速解离成C中间体,C与Nu成键也需要一定的能量,经过[R3C….Nu]过渡态Ts2形成产物。由于决定反应速率的一步是过渡态势能最高的一步,即C—X键的离解,此步只涉及到一种分子,因此,反应称单分子亲核取代反应。
SN2反应的立体化学:
从SN2反应机理可以看出,亲核试剂从离去基团的背面进攻,其结果发生了构型的转化。Ingold等人将光活性的2—碘辛烷与放射同位素碘离子在丙酮中进行交换反应,结果发现,消旋化速率是交换反应速率的两倍,说明产物的构型发生了转化——瓦尔登(Walden)转化。反应物2—碘辛烷是S构型,经SN2反应后,构型完全转化,成为R构型,旋光方向相反,R、S构型形成一对外消旋体,旋光抵消,因此,消旋化速率是交换反应速率的两倍。
立体化学的证据支持了SN2机理,从构型的完全转化,说明了亲核试剂是从离去基团的背面进攻中心碳原子。绝大多数亲核取代反应属于SN2机理,大量的实验事实证明了这一点。因此,SN2反应总是伴随着构型的翻转,或者说,完全的构型转化往往是SN2反应标志。为什么亲核试剂总是从离去基团的背面进攻?这是由于①从正面进攻会受到携带电子的离去基团的排斥;②从背面进攻能形成较为稳定的过渡态,降低反应的活化能。
SN1反应的立体化学:
在SN1反应中,C离子的形成是决定整个反应速率的步骤。C离子为sp2杂化的平面结构,带正电荷的碳原子有一个空的p轨道。亲核试剂与C离子反应时,可从C平面的两边进入,反应几率相等,结果得到外消旋化的产物。即50%构型保持和50%的构型转化。完全理想的SN1反应只是一种极限情况,在大多数情况下,产物并非完全的外消旋化,往往是一部分外消旋化,一部分构型转化,构型转化量大于构型保持量。如(R)—2—溴辛烷在碱性水溶液中水解得到83%的构型转化产物,17%的构型保持产物,即发生了34%的外消旋化。为了解释这种SN1反应中的部分外消旋化现象,温斯坦(Weinstein.S)用离子对机理进行了解释。
消除(去)反应
卤代烷与强碱的醇溶液共热,主要发生消除反应,脱去一份子卤化氢生成烯烃。卤代烷脱卤化氢时,氢原子主要是从含氢较少的相邻碳原子上脱去,这是一条经验规律,称为Saytzeff规则。
消除机理(E1和E2),卤代烷的烷基结构不同,反应按不同机理进行。
E1:对三级溴丁烷,反应分两步进行,首先生成碳正离子,然后脱氢发生消除或加成生成取代产物。
反应的决速步骤是碳正离子的形成,反应速率仅与反应物浓度有关,v=k[RX],在动力学上为一级反应,是单分子反应,用E1表示。可见,E1和SN1都是通过同一个碳正离子进行反应,因此,在反应进程中,两种反应相互竞争。通常高温有利于消除,因为消除质子生成烯烃需要更高的活化能;但在极性溶剂及没有强碱存在时,SN1反应快,且产物稳定,主要得取代产物。