数学手抄报模板内容
数学手抄报模板内容资料一
趣味数学题
【1】假设有一个池塘,里面有无穷多的水。现有2个空水壶,容积分别为5升和6升。问题是如何只用这2个水壶从池塘里取得3升的水。
【2】周雯的妈妈是豫林水泥厂的化验员。一天,周雯来到化验室做作业。做完后想出去玩。 "等等,妈妈还要考你一个题目,"她接着说,"你看这6只做化验用的玻璃杯,前面3只盛满了水,后面3只是空的。你能只移动1只玻璃杯,就便盛满水的杯子和空杯子间隔起来吗?" 爱动脑筋的周雯,是学校里有名的"小机灵",她只想了一会儿就做到了。请你想想看,"小机灵"是怎样做的?
【3】三个小伙子同时爱上了一个姑娘,为了决定他们谁能娶这个姑娘,他们决定用进行一次决斗。小李的命中率是30%,小黄比他好些,命中率是50%,最出的手是小林,他从不失误,命中率是100%。由于这个显而易见的事实,为公平起见,他们决定按这样的顺序:小
李先开,小黄第二,小林最后。然后这样循环,直到他们只剩下一个人。那么这三个人中谁活下来的机会最大呢?他们都应该采取什么样的策略?
【4】一间囚房里关押着两个犯人。每天监狱都会为这间囚房提供一罐汤,让这两个犯人自己来分。起初,这两个人经常会发生争执,因为他们总是有人认为对方的汤比自己的多。后来他们到了一个两全其美的办法:一个人分汤,让另一个人先选。于是争端就这么解决了。可是,现在这间囚房里又加进来一个新犯人,现在是三个人来分汤。必须寻一个新的方法来维持他们之间的.和平。该怎么办呢?
数学手抄报模板内容资料二
函数小史
数学史表明,重要的数学概念的产生和发展,对数学发展起着不可估量的作用。有些重要的数学概念对数学分支的产生起着奠定性的作用。我们刚学过的函数就是这样的重要概念。在笛卡尔引入变量以后,变量和函数等概念日益渗透到科学技术的各个领域。纵览宇宙,运算天体,探索热的传导,揭示电磁秘密,这些都和函数概念息息相关。正是在这些实践过程中,人们对函数的概念不断深化。
他又用函数表示在直角坐标系中曲线上一点的横坐标、纵坐标。1718年,莱布尼茨的学生、瑞士数学家贝努利把函数定义为:“由某个变量及任意的一个常数结合而成的数量。”意思是凡变量x和常量构成的式子都叫做x的函数。贝努利所强调的是函数要用公式来表示。
后来数学家觉得不应该把函数概念局限在只能用公式来表达上。只要一些变量变化,另一些变量能随之而变化就可以,至于这两个变量的关系是否要用公式来表示,就不作为判别函数的标准。
数学手抄报的内容1755年,瑞士数学家欧拉把函数定义为:“如果某些变量,以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数。”在欧拉的定义中,就不强调函数要用公式表示了。由于函数不一定要用公式来表示,欧拉曾把画在坐标系的曲线也叫函数。他认为:“函数是随意画出的一条曲线。”
当时有些数学家对于不用公式来表示函数感到很不习惯,有的数学家甚至抱怀疑态度。他们把能用公式表示的函数叫“真函数”,把不能用公式表示的函数叫“假函数”。1821年,法国数学家柯西给出了类似现在中学课本的函数定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着而确定时,则将最初的变数叫自变量,其他各变
数叫做函数。”在柯西的定义中,首先出现了自变量一词。
1834年,俄国数学家罗巴契夫斯基进一步提出函数的定义:“x的函数是这样的一个数,它对于每一个x都有确定的值,并且随着x一起变化。函数值可以由解析式给出,也可以由一个条件给出,这个条件提供了一种寻求全部对应值的方法。函数的这种依赖关系可以存在,但仍然是未知的。”这个定义指出了对应关系(条件)的必要性,利用这个关系,可以来求出每一个x的对应值。
1837年,德国数学家狄里克雷认为怎样去建立x与y之间的对应关系是无关紧要的,所以他的定义是:“如果对于x的每一个值,y总有一个完全确定的值与之对应,则y是x的函数。”这个定义抓住了概念的本质属性,变量y称为x的函数,只需有一个法则存在,使得这个函数取值范围中的每一个值,有一个确定的y值和它对应就行了,不管这个法则是公式或图象或表格或其他形式。这个定义比前面的定义带有普遍性,为理论研究和实际应用提供了方便。因此,这个定义曾被比较长期的使用着。
自从德国数学家康托尔的集合论被大家接受后,用集合对应关系来定义函数概念就是现在中学课本里用的了。
发布评论