莫比乌斯带
麦比乌斯圈(Möbius strip, Möbius band)是一种单侧、不可定向的曲面。因A.F.麦比乌斯(August Ferdinand Möbius, 1790-1868)发现而得名。将一个长方形纸条ABCD 的一端AB固定,另一端DC扭转半周后,把AB和CD粘合在一起,得到的曲面就是麦比乌斯圈,也称麦比乌斯带。
莫比乌斯带
莫比乌斯带(Möbiusstrip或者Möbiusband),又译梅比斯环或麦比乌斯带,是一种拓扑学结构,它只有一个面(表面),和一个边界。它是由德国数学家、天文学家莫比乌斯和约翰·李斯丁在1858年独立发现的。这个结构可以用一个纸带旋转半圈再把两端粘上之后轻而易举地制作出来。事实上有两种不同的莫比乌斯带镜像,他们相互对称。如果把纸带顺时针旋转再粘贴,就会形成一个右手性的莫比乌斯带,反之亦类似。
莫比乌斯带本身具有很多奇妙的性质。如果从中间剪开一个莫比乌斯带,不会得到两个窄的带子,而是会形成一个把纸带的端头扭转了两次再结合的环(并不是莫比乌斯带),再把刚刚做出那个把纸带的端头扭转了两次再结合的环从中间剪开,则变成两个环。如果你把带子的宽度分为三分,并沿着分割线剪开的话,会得到两个环,一个是窄一些的莫比乌斯带,另一个则是一个旋转了两次再结合的环。另外一个有趣的特性是将纸带旋转多次再粘贴末端而产生的。比如旋转三个半圈的带子再剪开后会形成一个三叶结。剪
开带子之后再进行旋转,然后重新粘贴则会变成数个Paradromic。
莫比乌斯带常被认为是无穷大符号“∞”的创意来源,因为如果某个人站在一个巨大的莫比乌斯带的表面上沿着他能看到的“路”一直走下去,他就永远不会停下来。
但是这是一个不真实的传闻,因为“∞”的发明比莫比乌斯带还要早。
公元1858年,两位德国数学家莫比乌斯和Johann Benedict Listing分别发现,一个扭转180度后再两头粘接起来的纸条,具有魔术般的性质。与普通纸带具有两个面(双侧曲面)不同,这样的纸带只有一个面(单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘!这一神奇的单面纸带被称为“莫比乌斯带”(Möbius strip)。莫比乌斯,全名:奥古斯特·费迪南德·莫比乌斯(August FerdiUs MobiUs,1790-1868年)是德国数学家、天文学家。1790年11月17日生于德国瑙姆堡附近的舒尔普福塔。1808年入莱比锡大学学习法律,后转攻数学、物理和天文。1814年获博士学位,1816年任副教授,1829年当选为柏林科学院通讯院士,1844年任莱比锡大学天文与高等力学教授。1868年9月26日卒于莱比锡。
莫比乌斯的科学贡献涉及天文和数学两大领域。在数学方面,首先是他对19世纪射影几何学的影响。莫比乌斯发展了射影几何学的代数方法。他在<;重心计算>(1827年)一书中,创立了代数射影几何的基本概念------齐次坐标。在同一著作中他还揭示了对偶原理与配极之间的关系,并对交比概念给出了完善的处理。莫比乌斯带(1858年)。他较早对拓扑学作深入的探讨并给出恰当的提法。此外,莫比乌斯对
球面三角等其它数学分支也有重要贡献。
这是数学家发现的第一个单侧曲面。
在积分理论发展的过程中,由于曲面通常有两侧,所以人们要给曲面定个方向才能进行积分。但是,当时还没有人知道是否存在这样的曲面,它只有一侧从而无法在它上面确定一个积分的方向。
而莫比乌斯带正是这样的一个单侧曲面,它只有一个侧面从而无法定向。所以这类曲面又有一个名字叫“不可定向曲面”。
由于莫比乌斯带只有一个面,这个面的长度自然就是普通纸环一面长度的两倍了。有人想到将这个特性用到传送皮带上,这样的话就可以把磨损分摊到更多的地方,从而提高皮带的寿命。这个想法还获得了美国的专利。如果我们把纸带想像成金属带,让电流由其中一个夹子流入而从另一个夹子流出的话,在纸带表面的电流有两个可能的流动方向,而这两个方向的电流产生的磁场恰好互相抵消。也就是说,电流在这个装置流动的时候不会产生磁场,所以也不会有电磁感应的现象发生。这就是一个无电感电阻。这种电阻就叫默比乌斯电阻。
麦比乌斯圈莫比乌斯带在艺术和文化作品中也经常被引用,作为“无限循环”的一个象征。国际通用的循环再造标志就是一个绿的、摆放成三角形的莫比乌斯带。在<;哆啦A 梦>(小叮当)漫画中,就有一个形状是莫
比乌斯带的道具,只要把它放在门把手上,里边的人开门就会回到同一个房间里去。如果我们看科学馆门前的环状雕塑,多半也利用了类似莫比乌斯带的性质,有空的话经过这些雕塑可以数一下这些环有多少个面多少条边沿,我估计绝大部分结果都是1。而至于埃舍尔的例子就更是众人皆知,也不用我饶舌了。
实验室中也有可能产生莫比乌斯带形状的粒子。前不久,一科学家在Journal of Chemical Physics上发表了一篇论文,其中预言了一种莫比乌斯带形状的碳单质(准确来说应该是石墨烯)。它能抵抗摄氏200度左右的温度,算是相当稳定。由于它莫比乌斯带的结构,它应该是一个偶极子,从而可以形成稳定的晶体。现在就等科学家们把它实际做出来了。
这一切,都是由数学家看到一个粘错的纸环开始的。
对于这样一个看来十分简单的问题,数百年间,曾有许多科学家进行了认真研究,结果都没有成功。后来,德国的数学家莫比乌斯对此发生了浓厚兴趣,他长时间专
心思索、试验,也毫无结果。
有一天,他被这个问题弄得头昏脑涨了,便到野外去散步。新鲜的空气,清凉的风,使他顿时感到轻松舒适,但他头脑里仍然只有那个尚未到的圈儿。
一片片肥大的玉米叶子,在他眼里变成了“绿的纸条儿”,他不由自主地蹲下去,摆弄着、观察着。叶子弯曲着耷拉下来,有许多扭成半圆形的,他随便撕下一片,顺着叶子自然扭的方向对接成一个圆圈儿,他惊喜地发现,这“绿的圆圈儿”就是他梦寐以求的那种圆圈。
莫比乌斯回到办公室,裁出纸条,把纸的一端扭转180°,再将一端的正面和背面粘在一起,这样就做成了只有一个面的纸圈儿。
圆圈做成后,莫比乌斯捉了一只小甲虫,放在上面让它爬。结果,小甲虫不翻越任何边界就爬遍了圆圈儿的所有部分。莫比乌斯激动地说:“公正的小甲虫,你无可辩驳地证明了这个圈儿只有一个面。”莫比乌斯圈就这样被发现了。
做几个简单的实验,就会发现“莫比乌斯圈”有许多让我们感到惊奇而有趣的结果。弄好一个圈,粘好,绕一圈后可以发现,另一个面的入口被堵住了,原理就是这样啊.实验一如果在裁好的一张纸条正中间画一条线,粘成“莫比乌斯带”,再沿线剪开,把这个圈一分为二,照理应得到两个圈儿,奇怪的是,剪开后竟是一个大圈儿。实验二如果在纸条上划两条线,把纸条三等分,再粘成“莫比乌斯带”,用剪刀沿画线剪开,剪刀绕两个圈竟然又回到原出发点,猜一猜,剪开后的结果是什么,是一个大圈?还是三个圈儿?都不是。它究竟是什么呢?你自己动手做这个实验就知道了。你就会惊奇地发现,纸带不是一分为二,而是一大一小的相扣环。
有趣的是:新得到的这个较长的纸圈,本身却是一个双侧曲面,它的两条边界自身虽不打结,但却相互套在一起。我们可以把上述纸圈,再一次沿中线剪开,这回可
真的一分为二了!得到的是两条互相套着的纸圈,而原先的两条边界,则分别包含于两条纸圈之中,只是每条纸圈本身并不打结罢了。
关于莫比乌斯带的单侧性,可如下直观地了解,如果给莫比乌斯带着,笔始终沿曲面移动,且不越过它的边界,最后可把莫比乌斯圈两面均涂上颜,即区分不出何是正面,何是反面。对圆柱面则不同,在一侧着不通过边界不可能对另一侧也着。单侧性又称不可定向性。以曲面上除边缘外的每一点为圆心各画一个小圆,对每个小圆周指定一个方向,称为相伴莫比乌斯圈单侧曲面圆心点的指向,若能使相邻两点相伴的指向相同,则称曲面可定向,否则称为不可定向。莫比乌斯圈是不可定向的。
莫比乌斯圈还有着更为奇异的特性。一些在平面上无法解决的问题,却不可思议地在莫比乌斯圈上获得了解决。比如在普通空间无法实现的“手套易位问题”:人左右两手的手套虽然极为相像,但却有着本质的不同。我们不可能把左手的手套贴切地戴到右手上去;也不能把右手的手套贴切地戴到左手上来。无论你怎么扭来转去,左手套永远是左手套,右手套也永远是右手套。不过,倘若你把它搬到莫比乌斯圈上来,那么解决起来就易如反掌了。
“手套移位问题”告诉我们:堵塞在一个扭曲了的面上,左、右手系的物体可以通过扭曲实现转换。让我
们展开想象的翅膀,
设想我们的空间在宇宙的某个边缘,呈现出麦比乌斯圈式的弯曲。那么,有朝一日,我们的星际宇航员会带着左胸腔的心脏出发,却带着右胸腔的心脏返回地球呢!瞧,莫比乌斯圈是多么的神奇!但是,莫比乌斯圈具有一条非常明显的边界。这似乎是一种美中不足。公元1882年,另一位德国数学家费力克斯·克莱茵(FelixKlein,1849~1925),终于到了一种自我封闭而没有明显边界的模型,后来以他的名字
发布评论