高中数学教案设计范例
数学是一门日常都要使用的学科,所以要具有好的教案才能充分教诲学生们如何使用数学,这里给大家分享一些关于高中数学教案设计范例,方便大家学习。
高中数学教案设计范例1
教学目标
(1)了解等差数列前 项和的定义,了解逆项相加的原理,知道等差数列前 项和公式推导的进程,记忆公式的两种情势;
(2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式触及五个字母,已知其中三个量求另两个值;
(3)会利用等差数列通项公式与前 项和的公式研究 的最值.
2.通过公式的推导和公式的运用,使学生体会从特别到一样,再从一样到特别的思维规律,初步形成认识问题,解决问题的一样思路和方法.
3.通过公式推导的进程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平.
4.通过公式的推导进程,展现数学中的对称美;通过有关内容在实际生活中的运用,使学生再一次感受数学源于生活,又服务于生活的实用性,引导学生要善于视察生活,从生活中发觉问题,并数学地解决问题.
教学建议
(1)知识结构
本节内容是等差数列前 项和公式的推导和运用,第一通过具体的例子给出了求等差数列前 项和的思路,而后导出了一样的公式,并加以运用;再与等差数列通项公式组成方程组,共同运用,解决有关问题.
(2)重点、难点分析
教学重点是等差数列前 项和公式的推导和运用,难点是公式推导的思路.
推导进程的展现体现了人类解决问题的一样思路,即从特别问题的解决中提炼一样方法,再试图运用这一方法解决一样情形,所以推导公式的进程中所包蕴的思想方法比公式本身更为重要.等差数列前 项和公式有两种情势,应根据条件挑选适当的情势进行运算;另外反用公式、变用公式、前 项和公式与通项公式的综合运用体现了方程(组)思想.
高斯算法表现了大数学家的智慧和巧思,对一样学生来说有很大难度,但大多数学生都听说过这个故事,所以难点在于一样等差数列求和的思路上.
(3)教法建议
①本节内容分为两课时,一节为公式推导及简单运用,一节侧重于通项公式与前 项和公式综合运用.
②前 项和公式的推导,建议由具体问题引入,使学生体会问题源于生活.
③强调从特别到一样,再从一样到特别的摸索方法与研究方法.
④补充等差数列前 项和的值、最小值问题.
⑤用梯形面积公式记忆等差数列前 项和公式.
等差数列的前项和公式教学设计示例
教学目标
1.通过教学使学生知道等差数列的前 项和公式的推导进程,并能用公式解决简单的问题.
2.通过公式推导的教学使学生进一步体会从特别到一样,再从一样到特别的思想方法,通过公式的运用体会方程的思想.
教学重点,难点
教学重点是等差数列的前 项和公式的推导和运用,难点是获得推导公式的思路.
教学用具
实物投影仪,多媒体软件,电脑.
教学方法
讲授法.
高中数学教案教学进程
一.新课引入
提出问题(播放媒体资料):一个堆放铅笔的V形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放100支.这个V形架上共放着多少支铅笔?(课件设计见课件展现)
问题就是(板书)“ ”
这是小学时就知道的一个故事,高斯的算法非常高明,回想他是怎样算的.(由一位学生回答,再由学生讨论其高明之处)高斯算法的高明之处在于他发觉这100个数可以分为50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,…,每组数的和均相等,都等于101,50个101就等于5050了.高斯算法将加法问题转化为乘法运算,迅速准确得到了结果.
我们期望求一样的等差数列的和,高斯算法对我们有何启示?
二.讲授新课
(板书)等差数列前 项和公式
1.公式推导(板书)
问题(幻灯片):设等差数列 的首项为 ,公差为 , 由学生讨论,研究高斯算法对一样等差数列求和的指导意义.
思路一:运用基本量思想,将各项用 和 表示,得
,有以下等式
,问题是一共有多少个 ,好像与 的奇偶有关.这个思路好像进行不下去了.
思路二:
上面的等式其实就是 ,为躲避个数问题,做一个改写 , ,两式左右分别相加,得
,
于是有: .这就是倒序相加法.
思路三:受思路二的启示,重新调剂思路一,可得 ,于是 .
于是得到了两个公式(投影片): 和 .
2.公式记忆
用梯形面积公式记忆等差数列前 项和公式,这里对图形进行了割、补两种处理,对应着等差数列前 项和的两个公式.
3.公式的运用
公式中含有四个量,运用方程的思想,知三求一.
例1.求和:(1) ;
(2) (结果用 表示)
解题的关键是数清项数,小结数项数的方法.
例2.等差数列 中前多少项的和是9900?
本题实质是反用公式,解一个关于 的一元二次函数,注意得到的项数 必须是正整数.
三.小结
1.推导等差数列前 项和公式的思路;
2.公式的运用中的数学思想.
四.板书设计
高中数学教案设计范例2
一、复习内容
平面向量的概念及运算法则
二、复习重点
向量的概念及运算法则的运用及其用向量知识,实现几何与代数之间的等价转化。
三、具体教学进程
1.学生准备课前预习回家做作业。其具体步骤是:相应知识的系统梳理;典型例题的摘录;搜集平时作业,测验作业中存在的典型毛病;提出针性训练的练习题;准备摸索题,以及家庭作业。学生的准备可以从中挑选一项,学有余力的同学可以多选。
2.学生可以分为出题组、答题组和归纳组(每组3~4人),三个小组又可构成一个大的探究组,各小组的角在其进程中可以互换;教师从旁引导,控制教学节奏,并有机、适时地对有争议的问题或引发认知冲突的部分作相应的释疑,最后选出具有代表性的题目和表达最完全的归纳展现给学生。
出题组:在教师的引导下,确立出题意图后,可以自编或在课本、资料中寻觅适当的例题。
答题组:迅速给出题目答案或解题思路步骤(由学生自己讲授),同时确立该题所考察的知识点和方法,并相互讨论解题进程中的易错点和容易忽视的问题。
归纳组:对照相应的问题,归纳出解决问题的关键和方法及其需要注意的事项。并以书面的情势给出,可充分利用投影的方式展现给学生。
发布评论