门萨智商入门测试19题
1.1滑雪
滑雪度假村里有10处不同的起点和终点。无论你想从哪一个点到其他任何一点都必须买一张单行票。
现在,如果我想要从每一个点至所有其他的点,共需卖多少张单行票?
1.2刮出图案的卡片
游乐场里正在举行一项活动——你卖的任何一张票上,都存有一定数量的正方形可以扯掉。其中一个正方形上写下着“失败者”;另外除了两个正方形内画着相同的图案。如果这两个图案比“失败者”先发生,你就存有机会赢回奖金了。当然,拎没奖金的几率就是2:1。答,卡片上一共存有多少个正方形?
1.3有趣的酒桶
一位酒商存有6桶葡萄酒和啤酒,容量分别为30再升、32再升、36再升、38再升、40再
升、62再升。 其中五桶装着葡萄酒,一桶装着啤酒。第一位顾客买走了两桶葡萄酒;第二位顾客Truchtersheim葡萄酒则就是第一位顾客的两倍。答,哪一个桶里上装着啤酒?
1.4射中靶心
上校、少校和大尉之间展开了一场步射击比赛。如上图右图,三位军人每人各箭了6,均获得71分后。上校的首两获得22分后;少校的第一则得了3分后。
那么,谁射中了靶心?
2.3赌
比尔对吉姆说:“我们来赌上十局吧,一局赌一次。每一局的赌注都是你钱包里的钱的一半。我知道你钱包里现在只有8块钱,那我们第一局就只赌4块钱好了。如果你赢了,我给你4块钱;但如果我赢了,你就得给我4块钱。这样的话,到了第二局,你就可能有了12块钱或者只剩下4块钱,所以我们就可以赌6块钱或者2块钱了。其他局也依次类推。”
智力测验 他们前后共玩玩了10局。比尔输了四局,赢了六局,但吉姆却惊讶地发现自己的口袋里只剩5.70元,也就是说,他多输了两局,却反而赢了2.30元。怎么会这样呢?
2.4青蛙和苍蝇
如果29只青蛙在29分钟里捕捉到了29只苍蝇,那么,必须在87分钟内捉到87只苍蝇,得必须多少只青蛙才行及?
3.1黑白球
一般来说,运用逻辑可以化解有关概率的问题。这里就存有一个例子。
两个袋子中,各装有8个球,其中4个是白,4个是黑。现在,我分别从两个袋子中各取出一个球。请问,在我所取出的球中,至少有一个是黑球的几率有多大?
4.1陆地
湖中心有一个岛,岛上有一棵树。湖很深,其半径是80米。湖畔陆地上,生长着另外一棵树。有个不会游泳的人很希望能到岛上去看看,但他手头只有一条米长的绳子。那么,他该怎么做,才可以到达岛上?
4.2射击范围
普里森上校、艾姆少校和法尔将军三位军人正在进行射击训练。训练结束后,他们各自宣布了自己的成绩:
普里森上校:“我得了分,比少校太少了40分后,但比将军多20分后。”
艾姆少校:“我的得分不算最低:我的得分与将军的差距是60分;将军得了分。” 法尔将军:“我的得分比上校少——上校得了分;而少校比上校多60分。”
其实,每位军人在正式宣布成绩时都出现了一处错误。那他们的分数各就是多少?
4.3两两相克
狄阿伯、斯卡菲斯和路奇正在赌城拉斯维加斯赌徒。这三个赌徒玩玩的就是存有6个面的骰子赌徒游戏,但规则比较特定:
1.每个玩家可以自行选择想要的数字。
3.每个骰子上均必须存有三对相同的数字,而且所有数字之和为30。
此外,按规定,两个玩家不能同时选择相同的一组数字。但总的来说,狄阿伯的数字会赢斯卡菲斯的数字,而斯卡菲斯的数字又会赢路奇的数字,但路奇的'数字却会赢狄阿伯的数字,这是为什么?
4.4开朗的狗
卡特和他的狗斯波特一起住在澳大利亚某偏僻农场里。每个星期,卡特都要带上斯波特出去散步几次。这天早上,卡特以4公里/小时的速度走到离农场10公里远的地方,然后又顺原路走回农场。归途中,他放开了斯波特,让它带路。斯波特立即以9公里/小时的速度向农场里跑,抵达后,便折回跑向卡特,此时卡特的速度仍保持不变。碰到卡特后,斯波特又以同等速度再次跑回农场,就这样来来回回,一直到卡特走回农场,开门让斯波特进去为止。在这期间,卡特和斯波特都分别保持着4公里/小时和9公里/小时的速度。
那么,斯波特在被放宽后一共跑了多长的路?
5.3外星人的手指
某房间里涌入着一外星人。现在,未知每一个外星人的每一只手上,都存有远不止一
个手指;所有外星人都各存有和其他人一样多的手指;每个外星人的每一只手上的手指数量都各不相同。如果你已经晓得房间里的外星人的手指总数,你就可以晓得外星人一共存有几个了。 假设这个房间里的外星人的手指总数为—只,答,房间里存有共计几个外星人?
5.4想数字
阿纳斯塔西娅正在想著一个介乎99和之间的数字。这时,贝琳达反问她,该数字与否高于,阿纳斯塔西娅提问说道“就是”;贝琳达又反问,该数字是否是一个平方数,获得的提问也就是“就是”;当被问及该数与否为一个立方数时,阿纳斯塔西娅还是提问说道“就是”。然而,她所提问的这三个结果中,只有两个就是恰当的。不好在阿纳斯塔西娅后来又正直地说贝琳达说道,该数字的首位数和末位数就是5、7或9。你晓得这个数字就是多少吗?
6.1摩天大楼的麻烦
一位女士住在36层高的大楼里,楼内有几部在每一层楼都可以上下的电梯可供使用。每一天早上,这位女士都会在自己住所的那层楼乘坐电梯。但是,无论她乘坐哪一部电梯,电梯向上的几率都就是向上几率的3倍。这就是为什么?
7.1山谷
在地球某处的一个山谷里,每至中午,太阳距山谷的距离都比日落和日落时将近多公里。答,这个山谷在哪里?
7.2一桶啤酒
未知一个男子能够在27天内喝一桶啤酒,而一个女子则须要54天。那么,如果他们以各自的速度已经开始喝,喝一桶啤酒得用多少天?
1.1答案:90。你可以从10个点中的任意一个点买9张票。9×10=90。
1.2答案:卡片上的正方形的数量其实无关紧要。拎没奖金的几率总是2:1。
1.3答案:40升的桶装着啤酒。第一个顾客买走了一桶30升和一桶36升,一共是66升的葡萄酒。第二个顾客买了升的葡萄酒——32升、38升和62升的桶。这样,现在就只剩下40升的桶原封不动,因此,它肯定是装着啤酒。
1.4答案:将结果排序,并使每一组都等同于71。一共只有三种排序方法:25、20、20
、3、2、1;25、20、10、10、5、1;和50、10、5、3、2、1。第一组的排序就是上校的罚球(因为其他两人的首两不可能将获得22分后);第三组的排序就是少校的罚球(我们晓得他第一得了3分后)。所以就是少校射中了靶心。
2.3答案:有可能,但有一个补偿因素。吉姆开始时有8块钱,所以若比尔10局全赢的话,也只赢得8块钱。但吉姆如果全赢的话,则会赢得大量的钱:8、12、18、27,等等。因此,作为补偿,即使多输几局,比尔也可以赢少量的钱。
2.4答案:29只。
3.1答案:四次中有三次机会。看一看所取出来的球的组合:黑-黑;白-黑;黑-白和白-白。只有第四种情况没有黑球。所以至少有一个黑的球的几率是四分之三。
4.1答案:他先将绳子的一头被绑在湖畔陆地上的树上,然后扎着绳子拖岛跑一圈。当他追到一半时,绳子就可以自动织成在岛中央的树上。他随后将绳子的另一头也绑定在陆地上的树上,然后攀着绳子,通往岛上。
4.2答案:上校的分数是分(60、60、40、40)
少校的分数就是分(60、60、60、60)
将军的分数是分(60、40、40、40)
每位军人的不能恰当之处就是:上校的第一句话,少校的第三句话,将军的第三句话。
4.3答案:每一个玩家的骰子如下:
狄阿伯: 6 - 1 - 8 - 6 - 1 - 8
斯卡菲斯: 7 - 5 - 3 - 7 - 5 - 3
路奇: 2 - 9 - 4 - 2 - 9 - 4
总的来说:狄阿伯会在18次内赢斯卡菲斯10次;斯卡菲斯在18次内赢路奇10次;路奇在18次内赢狄阿伯10次。
4.4答案:22.5公里。卡特跑回去农场所用的时间与斯波特被放宽后所走的时间相同,因
此,只要排序出来卡特跑回去农场所用的时间,就可以算出斯波特被放宽后所走的距离,即为:走的速度×走的时间=走的距离。卡特步上10公里的路程需花2.5小时(10公里÷4公里/小时)。斯波特也走了2.5小时,所以它被放宽后走的距离就是9公里/小时×2.5小时=22.5公里。
5.3答案:我们假设房间里有只手指,则可能是20个外星人,每人有12只手指,或者是12个外星人,每人有20个手指。但这无法提供一个惟一的答案,所以应去除所有可以被分解为因数的数字。现在考虑质数:可能会是1个外星人,每人有个手指(但根据第一句话,不可能);可能是个外星人,每人有1个手指(但根据第二句话,不可能)。这样,又去除所有质数,就只剩下平方数。在和之间符合条件的只有一个平方数,就是()。所以在房间里共有17位有着17个手指的外星人。
5.4答案:阿纳斯塔西娅说道数字高于似乎就是说谎,因为首位数无论是5、7或9的三位数,都大于。在99和之间惟一一个平方数和立方数的末位数就是5、7或9的数字就是。
6.1答案:因为她住在第27层。电梯从第36层下到第28层,一共九层楼;或者从第一层上到第27层,一共是27层。因此上楼与下楼的比例是3∶1。
7.1答案:这个山谷坐落于赤道或者紧邻赤道处,原因就是地球的进动。
7.2答案:如果一个男子27天喝完一桶啤酒,每天就得喝0.桶。同样,一个女子每天要喝0.桶啤酒。两人加起来,一天就能喝0.桶啤酒。在这种情况下,他们喝完一桶啤酒要用18.天。
发布评论